Uncertainty Principles for Abelian Groups

Liming Ge
(jointly with Jingsong Wu, Wenming Wu \& Wei Yuan)

Chinese Academy of Sciences

June 18, 2013
(ECNU, Shanghai, China)

Heisenberg uncertainty principle

Heisenberg's canonical commutation relation:
$[P, Q]=P Q-Q P=i \hbar$
A mathematical representation: $[D, M]=D M-M D=$ il
where $D=i \frac{d}{d x}$ and $M=M_{x} . D=i \mathscr{F}^{*} M \mathscr{F}$.
$\|f\|^{2}=\langle f, f\rangle=|\langle[D-d, M-c] f, f\rangle|$
$=\left|\left\langle(M-c) f,(D-d)^{*} f\right\rangle-\left\langle(D-d) f,(M-c)^{*} f\right\rangle\right|$
$\leqslant 2\|(D-d) f\| \cdot\|(M-c) f\|$.

Heisenberg uncertainty principle in term of Fourier analysis:

If

$$
\int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\hat{f}(\xi)|^{2} d \xi=1
$$

then we must have

$$
\int_{\mathbb{R}}|x f(x)|^{2} d x+\int_{\mathbb{R}}|\hat{\xi} \hat{f}(\xi)|^{2} d \xi \geqslant \frac{1}{(4 \pi)^{2}}
$$

Hardy uncertainty principle:

If $|f(x)| \leqslant C_{1} e^{-\pi a x^{2}}$ and $|\widehat{f}(\xi)| \leqslant C_{2} e^{-\pi \xi^{2} / a}$, then $f=C e^{-\pi a x^{2}}$.

This implies immediately that f and \widehat{f} cannot be both compactly supported.

Questions:

1. What could be the relation between the support of f and that of \widehat{f} ?
E.g. If f has a compact support, can the support of \widehat{f} lie in $[0, \infty)$?
(It is known that f and \widehat{f} can be supported in $[0, \infty)$.)
2. What if \mathbb{R} is replaced by another abelian group G ?

We shall study Question 2 for finite abelian groups and the group of integers.
G : a finite abelian group
$f: G \rightarrow \mathbb{C}$, a complex valued function
$\operatorname{supp}(f):=\{x \in G: x \in G, f(x) \neq 0\}$
\widehat{f} : the Fourier transform of f

Theorem 1 (An uncertainty principle)

(for a nonzero function f):

$$
\text { 1). } \quad|\operatorname{supp}(f)| \cdot|\operatorname{supp}(\widehat{f})| \geqslant|G| .
$$

For a cyclic group of prime order p(T. Tao, 2005):

$$
\text { 2). }|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geqslant p+1 .
$$

Uncertainty principle in term of spatial properties:

Suppose $X \subset G$ and $S \subset \widehat{G}$. Define

$$
P_{X}=\{f: \operatorname{supp}(f) \subset X\} ; \quad Q_{S}=\{f: \operatorname{supp}(\widehat{f}) \subset S\}
$$

Let f be a nonzero function on $G, X=\operatorname{supp}(f)$ and $S=\operatorname{supp}(\widehat{f})$. Then $f \in P_{X} \cap Q_{s}$.

Tao's result can be restated as follows: For $G=\mathbb{Z}_{p}$ and any X, S given as above, if $P_{X} \cap Q_{S} \neq 0$, then $|X|+|S| \geq p+1$.

We shall see $\operatorname{dim}\left(P_{X} \cap Q_{S}\right)=1$ when $|X|+|S|=p+1$.

Notation:

G : a finite additive abelian group, then G is self-dual.
$I^{2}(G)$: the Hilbert space of all complex-valued functions on G.
Inner product: $\langle f, g\rangle:=\frac{1}{|G|} \sum_{x \in G} f(x) \overline{g(x)}$.
Let f_{x} be the characteristic function on $\{x\}$. Then $\left\{f_{x}: x \in G\right\}$ is an orthogonal basis for $I^{2}(G)$.

Let $e: G \times G \rightarrow \mathbb{T}$ be any non-degenerate bi-character of G.
Let e_{x} denote the function $e(x, \cdot)$.
Then $\left\{e_{x}\right\}_{x \in G}$ is an orthonormal basis of $I^{2}(G)$.
If f is a complex function on G, the Fourier transform \widehat{f} of f is

$$
\widehat{f}:=\frac{1}{|G|} \sum_{x \in G} f(x) \overline{e_{x}} .
$$

More notation:

Let $X, S \subset G(=\widehat{G})$. Denote also by P_{X} the orthogonal projection from $I^{2}(G)$ onto the subspace $I^{2}(X)$ and Q_{S} the projection from $I^{2}(G)$ onto the subspace $\operatorname{span}\left\{e_{x}: x \in S\right\}$.
Then the uncertainty principle on G given by Theorem 1, part 1) can be reformulated by:
$|\operatorname{supp}(f)||\operatorname{supp}(\widehat{f})| \geqslant|G|(f \neq 0)$ is equivalent to

$$
|X| \cdot|S|<|G| \Rightarrow P_{X} \wedge Q_{S}=0
$$

The proof follows from a straight forward computation: for any $f \in I^{2}(G)$, if $f(x)=\sum_{y \in S} \lambda_{y} e_{y}(x)$, then

$$
\widehat{f}(\xi)=\frac{1}{|G|} \sum_{y \in S} \lambda_{y} e_{y}(\xi)=\frac{1}{|G|} \lambda_{\xi} .
$$

In fact,

$$
\begin{aligned}
\widehat{f}(\xi) & =\frac{1}{|G|} \sum_{x \in G} f(x) \overline{e(x, \xi)} \\
& =\frac{1}{|G|} \sum_{x \in G}\left(\sum_{y \in S} \lambda_{y} e(y, x)\right) \overline{e(x, \xi)} \\
& =\frac{1}{|G|} \sum_{y \in S} \lambda_{y}\left(\sum_{x \in G} e(y, x) \overline{e(x, \xi)}\right)=\frac{1}{|G|} \lambda_{\xi} .
\end{aligned}
$$

Thus $\left.f \in\left(P_{X} \wedge Q_{S}\right)\left(I^{2}(G)\right)\right) \Rightarrow \operatorname{supp}(f) \subset X, \operatorname{supp}(\widehat{f}) \subset S . \square$

Theorem 2: Let $G=\mathbb{Z}_{p}$ with p prime. Then the FAQ

1) Chebotarev's theorem(Resetnyak, Dieudonne, T.Tao, etc): Let $\left\{x_{1}, \cdots, x_{n}\right\},\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{Z}_{p},(n \leqslant p)$. Then

$$
\operatorname{det}\left(e^{\frac{2 \pi i x_{j} y_{k}}{\rho}}\right)_{1 \leqslant j, k \leqslant n} \neq 0 .
$$

2) (Tao's uncertainty principle) $|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geqslant p+1(f \neq 0)$.
3) If $|X|+|S| \leqslant p$, then $P_{X} \wedge Q_{S}=0$.

Proof. 1) $\Rightarrow 2$) Theorem 1.1. in [9, T.Tao].
2) $\Rightarrow 3)$ If there is a nonzero function $f \in P_{X} \wedge Q_{S}$, then $\operatorname{supp}(f) \subset X$ and $\operatorname{supp}(\widehat{f}) \subset S$. Thus $|X|+|S| \geqslant|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geqslant p+1$. 3) $\Rightarrow 2$) If $|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \leqslant p$, then let $X=\operatorname{supp}(f)$ and $S=\operatorname{supp}(\hat{f})$. We get a contradiction.
3) $\Rightarrow 1)$ If there is $\left\{x_{1}, \cdots, x_{n}\right\},\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{Z} / p \mathbb{Z}(n \leqslant p)$ such that

$$
\operatorname{det}\left(e^{\frac{2 \pi i x_{j} y_{k}}{\rho}}\right)_{1 \leqslant j, k \leqslant n}=0 .
$$

Then vectors $\left\{e_{x_{1}}, \cdots, e_{x_{n}}, f_{y}: y \in\left\{x_{1}, \cdots, x_{n}\right\}^{c}\right\}$ is linearly dependent. Thus there is a non-zero vector ($\lambda_{0}, \cdots, \lambda_{p-1}$) such that

$$
\sum_{i=1}^{n} \lambda_{x_{i}} e_{x_{i}}+\sum_{y \in\left\{x_{1}, \cdots, x_{n}\right\}^{c}} \lambda_{y} f_{y}=0
$$

Let $X=\left\{x_{1}, \cdots, x_{n}\right\}^{c}, S=\left\{x_{1}, \cdots, x_{n}\right\}$ and $f(x)=\lambda_{x}, x \in G$. Then $|X|+|S|=p$ but $f \in P_{X} \wedge Q_{S} . \square$

Proposition 1.

Let $w=e^{\frac{2 \pi i}{n}}$ and G be a cyclic group of order n and $|X|+|S|=n$. Then

$$
\operatorname{det}\left(w^{j k}\right)_{j \in X, k \in S^{c}}=0 \Leftrightarrow \operatorname{det}\left(w^{j k}\right)_{j \in X^{c}, k \in S}=0 .
$$

In particular $P_{X} \wedge Q_{S}=0 \Leftrightarrow \operatorname{det}\left(w^{j k}\right)_{j \in X, k \in S^{c}} \neq 0$.

Proof. Suppose $|X|=I, X^{c}=\left\{j_{1}^{\prime}, \cdots, j_{n-1}^{\prime}\right\}, S=\left\{k_{1}, \cdots, k_{n-1}\right\}$. Define $T f_{x}=f_{x}, x \in X$ and $T f_{j_{t}}=e_{k_{t}}, t=1, \cdots, n-l$.
Then $P_{X} \vee Q_{S}=I \Leftrightarrow T$ is invertible $\left.\Leftrightarrow T\right|_{1^{2}\left(X^{c}\right)}$ is invertible. The matrix of $\left.T\right|_{I^{2}\left(X^{c}\right)}=\left(w^{j k}\right)_{\left\{j \in X^{c}, k \in S\right\}}$.

Proposition 2

Let G be a finite abelian group and $X, S \subset G$. Then we have the following:

1) If $|X|+|S|>|G|$, then $P_{X} \wedge Q_{S} \neq 0$.
2) If $|X|+|S|=|G|$, then $P_{X} \wedge Q_{S}=0$ if and only if $P_{X^{c}} \wedge Q_{S^{c}}=0$.
3) If $|X| \cdot|S|<2 \sqrt{|G|}$, then $P_{X} \wedge Q_{S}=0$.

Proof: $\tau(T)=\frac{1}{|G|} \sum_{x \in G}\left\langle T e_{x}, e_{x}\right\rangle$ (the trace on $\mathscr{B}\left(I^{2}(G)\right)$).
By Kaplansky-formula, $\tau\left(P_{X} \vee Q_{S}-P_{X}\right)=\tau\left(Q_{S}-P_{X} \wedge Q_{S}\right)$

$$
\tau\left(P_{X} \wedge Q_{S}\right)=\tau\left(P_{X}\right)+\tau\left(Q_{S}\right)-\tau\left(P_{X} \vee Q_{S}\right)>0
$$

Proposition 3

Suppose G is a finite abelian group. Assume that there are $\alpha, \beta, \gamma \in \mathbb{N}$ such that, for any function $f(\neq 0)$ on G, we have $\alpha|\operatorname{supp}(f)|+\beta|\operatorname{supp}(f)| \geqslant \gamma$. Then for any nonzero function g on $G \times \mathbb{Z}_{p}$ with p prime, we have

$$
p \alpha|\operatorname{supp}(g)|+\beta|\operatorname{supp}(\widehat{g})| \geqslant p \gamma, \quad \alpha|\operatorname{supp}(g)|+p \beta|\operatorname{supp}(\widehat{g})| \geqslant p \gamma .
$$

Corollary 1

Let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ and f be a non zero function on G, where p and q are prime numbers. Then we have

$$
\begin{aligned}
& q|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geqslant q(p+1),|\operatorname{supp}(f)|+q|\operatorname{supp}(\widehat{f})| \geqslant q(p+1), \\
& p|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geqslant p(q+1),|\operatorname{supp}(f)|+p|\operatorname{supp}(\widehat{f})| \geqslant p(q+1) .
\end{aligned}
$$

Corollary 2

Let $G=\left(\mathbb{Z}_{p}\right)^{n}$ for a prime number p and a natural number n, and f be a non zero function on G. Then we have

$$
p^{j}|\operatorname{supp}(f)|+p^{n-j-1}|\operatorname{supp}(\widehat{f})| \geqslant p^{n}+p^{n-1}(j=0, \cdots, n-1) .
$$

Corollary 3

Let $G=\left(\mathbb{Z}_{p}\right)^{n}$ for a prime number p and a natural number n. For any subsets $X, S \subset G$, if there exist $0 \geqslant j \geqslant n-1$ such that $p^{j}|X|+p^{n-j-1}|S|<$ $p^{n}+p^{n-1}$ holds, then $P_{X} \wedge Q_{S}=0$.

Uncertainty Principles for \mathbb{Z}

Recall that an uncertainty principle for \mathbb{R} states that, when $X \subset \mathbb{R}$ and $S \subset \widehat{\mathbb{R}}$ are both compact, then $P_{X} \cap Q_{S}=0$. We hope to describe the largest possible such pairs (X, S). Or symmetrically the smallest pairs (X, S) so that $P_{X} \vee Q_{S}=I$.

Since \mathbb{Z} has no invariant finite measure, we may consider its dual group $G=\mathbb{T}$, the unit circle on the complex plane.

Now $G=\widehat{\mathbb{Z}}=\mathbb{T}, \widehat{G}=\widehat{\mathbb{T}}=\mathbb{Z} . G$ is not self-dual.
Goal: To investigate the respective subsets X of \mathbb{T} and S of \mathbb{Z} such that $P_{X} \wedge Q_{S}=0$ and $P_{X} \vee Q_{S}=I$.

Notation:

$d m(z)=\frac{1}{2 \pi i} \frac{d z}{z}=\frac{1}{2 \pi} d \theta$: the normalized Lebesgue measure on \mathbb{T}, where $z=e^{i \theta}, \theta \in[0,2 \pi)$. Also denote $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$, or simply $[0,2 \pi]$. $\left\{e^{i m \theta}: \theta \in[0,2 \pi), m \in \mathbb{Z}\right\}:$ an orthonormal basis of $L^{2}(\mathbb{T})$.
$\left\{e_{n}: n \in \mathbb{Z}\right\}$: the standard orthonormal basis in $I^{2}(\mathbb{Z})$,
where $e_{n}(m)=\delta_{n, m}$.
The Fourier transformation: $e^{i m \theta} \mapsto e_{m}$ is a unitary operator from $L^{2}(\mathbb{T})$ to $I^{2}(\mathbb{Z})$.

Recall:

$X \subset[0,2 \pi]$: a measurable subset, $m(X)$: the measure of X
P_{X} : the orthogonal projection from $L^{2}(\mathbb{T})$ onto $L^{2}(X)$
$S \subset \mathbb{Z}$
Q_{S} : the projection from $L^{2}(\mathbb{T})$ onto $\overline{s p a n}\left\{e^{i m \theta}: m \in S\right\}$
P_{t} : the projection from $L^{2}(\mathbb{T})$ onto $L^{2}([2(1-t) \pi, 2 \pi])$ for any $0<t<1$
$Q_{\geqslant j}$: the projection from $L^{2}(\mathbb{T})$ onto $\overline{\operatorname{span}}\left\{e^{i m \theta}: m \geqslant j, m \in \mathbb{Z}\right\}$
When $j=0$, the range of projection $Q_{\geqslant 0}$ is the Hardy space $H^{2}(\mathbb{T})$
For a mean μ_{ω} on \mathbb{Z} given by a free ultrafilter ω,
we define $\mu_{\omega}(S)=\mu_{\omega}\left(\chi_{S}\right)$
If the above is independent of ω, then we denote it by $\mu_{\infty}(S)$ and it is given by

$$
\mu_{\infty}(S)=\lim _{n \rightarrow \infty} \frac{|S \cap\{-n,-(n-1), \cdots, n-1, n\}|}{2 n+1}
$$

Definition

A pair (X, S) is called balanced if $P_{X} \wedge Q_{S}=0$ and $P_{X} \vee Q_{S}=I$.

When G is a finite abelian group, if (X, S) is balance, then $\tau\left(P_{X}\right)+\tau\left(Q_{S}\right)=1$.

Examples and Questions:

Examples $X=[0, \pi], S_{0}=2 \mathbb{Z}$, all even integers, $S_{1} \subset \mathbb{Z}$ all odd integers. $\left(X, S_{0}\right)$ and $\left(X, S_{1}\right)$ are balanced pairs.
$m(X)+\mu_{\infty}\left(S_{0}\right)=m(X)+\mu_{\infty}\left(S_{1}\right)=1$.
Questions Is $m(X)+\mu_{\infty}(S)=1$ a necessary condition for balanced pairs? If "no", for any $\epsilon>0$, can one find a balanced pair (X, S) so that $m(X)+\mu_{\infty}(S)<\epsilon$ or $m(X)+\mu_{\omega}(S)<\epsilon$?

Some basic facts:

1) $P_{X} \vee Q_{S}=I \Leftrightarrow P_{X} \vee Q_{-S}=I$, where $-S=\{-s: s \in S\}$;
2) $P_{X} \wedge Q_{S}=0 \Leftrightarrow P_{X} \wedge Q_{-S}=0$;
3) $P_{X} \vee Q_{s}=I \Leftrightarrow P_{X} \vee Q_{S+j}=I$, where $S+j=\{s+j: s \in S\}$;
4) $P_{X} \wedge Q_{S}=0 \Leftrightarrow P_{X} \wedge Q_{S+j}=0$;
5) If $X \subset \mathbb{T}$ with $0<m(X)<1$, then $P_{X} \wedge Q_{\geqslant j}=0$ and $P_{X} \vee Q_{\geqslant j}=I(\forall j \in \mathbb{Z})$.

From 5), we see that $\frac{1}{2}<m(X)+\mu_{\infty}\left(Q_{\geqslant 0}\right)<\frac{3}{2}$.

Proof. Let $(U f)(z)=\overline{f(z)}$. Then U is a conjugate linear operator such that $U^{2}=I$ and $U P_{X} U=P_{X}, U Q_{S} U=Q_{-s}$. Thus 1) and 2) are true.
Let $\left(U_{j} f\right)(z)=z^{j} f(z)$. Then U_{j} is a unitary operator such that $U P_{X} U^{*}=P_{X}, U Q_{S} U^{*}=Q_{S_{+j}}$. Hence 3) and 4) are true.
For 5), let $(V f)(z)=z f(z)$. Then V is a unitary operator such that $\left(I-P_{X} \wedge Q_{\geqslant 0}\right) V P_{X} \wedge Q_{\geqslant 0}=0$. As $P_{X} \wedge Q_{\geqslant 0} \leqslant Q_{\geqslant 0}$ and by Beurling theorem, there exists an inner function φ such that $P_{X} \wedge Q_{\geqslant 0}\left(H^{2}(\mathbb{T})\right)=\varphi H^{2}(\mathbb{T})$. Thus $\varphi=0$ and $P_{X} \wedge Q_{\geqslant 0}=0$. From 2), $P_{X} \subset \wedge Q_{\leqslant 0}=0$. This implies that $P_{X} \vee Q_{\geqslant 0}=l$.

Theorem 3

For any $\varepsilon>0$, there exists a measurable subset X of $[0,2 \pi]$ with $0<$ $m(X)<\varepsilon$ and a subset S of \mathbb{Z} with $\mu_{\omega}(S)=0$ for some free ultrafilter ω such that $P_{X} \wedge Q_{S}=0$ and $P_{X} \vee Q_{S}=I$.

Proof. For any $\epsilon>0$, there exist n in \mathbb{N} such that $\frac{1}{n}<\epsilon$. Let $X=\left[2\left(1-\frac{1}{n}\right) \pi, 2 \pi\right]$. Then $m(X)=\frac{1}{n}<\epsilon$. From Basic Fact 5), we have $P_{X} \wedge Q_{\geq 0}=0$ and $P_{X} \vee Q_{\geq 0}=P_{X} \vee Q_{\geq j}=I$ for any $j \in \mathbb{Z}$. Then $\overline{\operatorname{span}}\left\{e^{i \frac{n-1}{n} m \theta}, m \geq j\right\}=L^{2}[0,2 \pi]$ for j in \mathbb{Z}. In fact if there is a non zero vector f in $L^{2}[0,2 \pi]$ orthogonal to $\overline{s p a n}\left\{e^{i \frac{n-1}{n} m \theta}, m \geq j\right\}$, we define a function $g(\theta)=f\left(\frac{n}{n-1} \theta\right)$ when $0 \leq \theta \leq 2 \pi \frac{n-1}{n}, 0$ elsewhere, then we have
$\int_{0}^{2 \pi} f(\theta) e^{-i \frac{n-1}{n} m \theta} d \theta=\int_{0}^{2 \pi} g\left(\frac{n-1}{n} \theta\right) e^{-i \frac{n-1}{n} m \theta} d \theta=\int_{0}^{2 \frac{n-1}{n} \pi} g(\theta) e^{-i m \theta}=0$,
and hence g is a non zero vector in the range of $I-\left(P_{1 / n} \vee Q_{\geq j}\right)$ which leads a contradiction.

For any n in \mathbb{N}, since $\overline{s p a n}\left\{e^{i \frac{n-1}{n} m \theta}, m \geq j\right\}=L^{2}[0,2 \pi]$ for j in \mathbb{Z}, there exists $m(n, j)$ in \mathbb{N} such that the distance between $e^{i k \theta}$ and

$$
\overline{\operatorname{span}}\left\{e^{i \frac{n-1}{n} j \theta}, \ldots, e^{i \frac{n-1}{n} m(n, j) \theta}\right\}\left(=\mathscr{F}_{n, j}\right)
$$

is less than $\frac{1}{n}$ for any $-n \leq k \leq n$. Obviously, $m(n, j)>j$ for any j in \mathbb{Z}. Let $S_{n, j}$ be the set $\{j, \ldots, m(n, j)\}$. We define m_{k} in \mathbb{N} by induction. Let $m_{1}=m(1,0)$. Suppose that m_{k} is defined. Then $m_{k+1}=m\left(k+1, m_{k}^{2}\right)$ for $k \geq 1$ and $m_{k+1}>m_{k}^{2}$. It is clear that the closure of the union of $\mathscr{H}_{k, m_{k}}$, $k \geq 1$ is $L^{2}[0,2 \pi]$ and its corresponding set S is $\bigcup_{k \geq 1} S_{k, m_{k}}$. For the sequence $\# S \cap\{-n, \ldots, 0, \ldots, n\}$, there is a subsequence $\left\{\frac{\sum_{j=1}^{k}\left(m_{j}-m_{j-1}^{2}\right)}{2 n+1}\right\}_{k \geq 1}$ with limit zero, since $\sum_{j=1}^{k}\left(m_{j}-m_{j-1}^{2}\right)<m_{k}$. Hence there is a free ultrafilter ω such that $\lim _{n \rightarrow \omega} \frac{\# S \cap\{-n, \ldots, 0, \ldots, n\}}{2 n+1}=0 . \square$

Corollary

Let $X_{n}=\left[0, \frac{1}{n}\right] \subset \mathbb{T}$. For any free ultrafilter ω, there is a subset S of \mathbb{Z} with $\mu_{\omega}(S)=0$ such that $P_{X_{n}} \wedge Q_{S}=0$ and $P_{X_{n}} \vee Q_{S}=I$, for any $n \geq 1$. Thus, for any $f, g \in L^{2}(\mathbb{T})$, if there is an n such that $\left.f\right|_{x_{n}}=\left.g\right|_{x_{n}}$ and $\left.\widehat{f}\right|_{S}=\left.\widehat{g}\right|_{S}$, then $f=g$.

Conjecture: $S=\{0, \pm 1, \pm p, \pm 2 p: p$ a prime number $\}$ is such a set satisfies our Theorem 4, i.e., $([0, \epsilon], S)$ is balanced for any $\epsilon>0$.

In other words, two functions on \mathbb{T} agree on $[0, \epsilon]$ and their Fourier expansions agree on S. Then they must be the same function.

One possible application:

If (X, S) is a balanced pair for \mathbb{T} and $f \in L^{2}(\mathbb{T})$, then how can we recover f from $\left.f\right|_{X}$ and $\left.\widehat{f}\right|_{s}$?

It is not an easy question. In the following we shall workout a concrete example.

Theorem 4

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of odd natural numbers such that

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}}=+\infty
$$

Suppose $S=\{2 k: k \in \mathbb{N}\} \cup\left\{a_{n}\right\}$. Then $P_{1 / 2} \vee Q_{S}=I$ and $P_{1 / 2} \wedge Q_{S}=0$. In this case, $X=[\pi, 2 \pi]$. We may choose $\left\{a_{n}\right\}$ so that $m(X)+\mu_{\infty}(S)=\frac{3}{4}$.

Lemma Suppose p is a prime number and $I_{j}=\left\{w^{j} e^{i \theta} \in \mathbb{T}: \theta \in\left[0, \frac{2 \pi}{p}\right)\right\}$ for $j=0,1, \cdots, p-1$. Let $X\left(i_{1}, \cdots, i_{m}\right)=I_{i_{1}} \cup \cdots \cup I_{i_{m}}$ where $0 \leqslant i_{1}<\cdots<i_{m} \leqslant p-1$. Let $S_{0} \subset\{0,1, \cdots, p-1\}$ and $\emptyset \neq S_{1} \subset S_{0}^{c}$. Let $S=\left\{k p+s_{0}: k \in \mathbb{Z}, s_{0} \in S_{0}\right\} \cup\left\{k p+s_{1}: k \geqslant 0, s_{1} \in S_{1}\right\}$. Then we have

$$
P_{X\left(i_{1}, \ldots, i_{m}\right)} \wedge Q_{S}=0 \Leftrightarrow\left|S_{0}^{c}\right| \geqslant m+1
$$

Proof of Theorem 4. $Q_{S}<Q_{\geqslant 0}, P_{1 / 2} \wedge Q_{\geqslant 0}=0 \Rightarrow P_{1 / 2} \wedge Q_{S}=0$. Assume that $P_{1 / 2} \vee Q_{S} \neq I$. Then there exists a non-zero function f in $L^{2}([0,2 \pi])$ such that f is orthogonal to the ranges of $P_{1 / 2}$ and Q_{S}. Thus $\operatorname{supp}(f) \subset[0, \pi]$ and for any $s \in S$, we have

$$
\frac{1}{2 \pi} \int_{0}^{\pi} f(\theta) e^{-i s \theta} d \theta=\frac{1}{4 \pi} \int_{0}^{2 \pi} f\left(\frac{\theta}{2}\right) e^{-i s \theta / 2} d \theta=0
$$

Claim. $\mathscr{H}_{S}:=\overline{\operatorname{span}}\left\{e^{i s \theta / 2}: s \in S\right\}=L^{2}([0,2 \pi])$.

Firstly when $s=2 k(k \in \mathbb{N})$, we have $e^{i k \theta} \in \mathscr{F}_{s}$. When $s=a_{n}$ for $n \geqslant 1$, for any $m \in \mathbb{Z}$, we have

$$
\left\langle e^{i a_{n} \theta / 2}, e^{i m \theta}\right\rangle=\frac{2 i}{\pi\left(a_{n}-2 m\right)}
$$

Then $e^{i a_{n} \theta / 2}=\sum_{m \in \mathbb{Z}} \frac{2 i}{\pi} \frac{e^{i m \theta}}{a_{n}-2 m}$.
Let $\xi_{n}=\sum_{m=-\infty}^{-1} \frac{e^{i m \theta}}{a_{n}-2 m}=\sum_{m=1}^{\infty} \frac{e^{-i m \theta}}{a_{n}+2 m}$. To show that the claim holds, we just need to show that $\overline{\operatorname{span}}\left\{\xi_{n}: n \geqslant 1\right\}=\overline{\operatorname{span}}\left\{e^{-i m \theta}: m \geqslant 1\right\}$ which is equivalent to $\left\{\xi_{n}: n \geqslant 1\right\}^{\perp} \cap \overline{\operatorname{span}}\left\{e^{-i m \theta}: m \geqslant 1\right\}=0$.

Suppose that $\alpha^{(0)}=\sum_{m \geqslant 1} \alpha_{m}^{(0)} e^{-i m \theta}$ such that $\alpha^{(0)} \perp\left\{\xi_{n}: n \geqslant 1\right\}$ and $\sum_{m \geqslant 1}\left|\alpha_{m}^{(0)}\right|^{2}<\infty$. Thus for any $n \geqslant 1$, we have

$$
\sum_{m \geqslant 1} \frac{\alpha_{m}^{(0)}}{a_{n}+2 m}=0 .
$$

This implies that for any $n \geqslant 2$, we have

$$
0=\frac{1}{a_{n}-a_{1}} \sum_{m=1}^{\infty}\left(\frac{\alpha_{m}^{(0)}}{a_{1}+2 m}-\frac{\alpha^{(0)}}{a_{n}+2 m}\right)=\sum_{m=1}^{\infty} \frac{\alpha_{m}^{(0)}}{a_{1}+2 m} \frac{1}{a_{n}+2 m} .
$$

Let $\alpha_{m}^{(1)}:=\frac{\alpha_{m}^{(0)}}{a_{1}+2 m}$ and $\alpha^{(1)}:=\sum_{m \geqslant 1} \alpha_{m}^{(1)} e^{-i m \theta}$. Then $\alpha^{(1)} \perp\left\{\xi_{n}: n \geqslant 2\right\}$ and

$$
\sum_{m=1}^{\infty}\left|\alpha_{m}^{(1)}\right| \leqslant\left\|\alpha^{(0)}\right\| \cdot\left(\sum_{m=1}^{\infty} \frac{1}{\left(a_{n}+2 m\right)^{2}}\right)^{1 / 2}<\infty
$$

Iterating the process, for any $N>0$, we can define $\alpha_{m}^{(N)}=\frac{\alpha_{m}^{(N-1)}}{a_{N}+2 m}$ and $\alpha^{(N)}=\sum_{m \geqslant 1} \alpha_{m}^{(N)} e^{-i m \theta}$ with $\alpha^{(N)} \perp\left\{\xi_{n}: n \geqslant N+1\right\}$. Without loss of generality, we can assume that $\alpha_{1}^{(0)}=1$. Then $\alpha_{1}^{(N)}=\prod_{n=1}^{N} \frac{1}{a_{n}+2}$. We define

$$
\beta_{m}^{(N)}=\frac{\alpha_{m}^{(N)}}{\alpha_{1}^{(N)}}=\left(a_{1}+2\right) \prod_{n=2}^{N} \frac{a_{n}+2}{a_{n}+2 m} \alpha_{m}^{(1)}, m \geqslant 1 .
$$

Then we have $\beta^{(N)}=\frac{\alpha^{(N)}}{\alpha_{1}^{(N)}}$ and $\beta^{(N)} \perp\left\{\xi_{n}: n \geqslant N+1\right\}$ and

$$
\begin{aligned}
\sum_{m \geqslant 2}\left|\beta_{m}^{(N)}\right| & =\sum_{m \geqslant 2}\left(a_{1}+2\right)\left(\prod_{n=2}^{N} \frac{a_{n}+2}{a_{n}+2 m}\right)\left|\alpha_{m}^{(1)}\right| \\
& \leqslant\left(a_{1}+2\right)\left(\prod_{n=2}^{N} \frac{a_{n}+2}{a_{n}+4}\right) \sum_{m \geqslant 2}\left|\alpha_{m}^{(1)}\right|
\end{aligned}
$$

Then as $\sum \frac{1}{a_{n}}=+\infty$, thus $\prod_{n=2}^{N} \frac{a_{n}+2}{a_{n}+4}=\prod\left(1-\frac{2}{a_{n}+4}\right) \rightarrow 0$ as $N \rightarrow \infty$. Then \exists sufficient large N_{0} such that for any $N \geqslant N_{0}$ we have

$$
\begin{equation*}
\left(a_{1}+2\right)\left(\prod_{n=2}^{N} \frac{a_{n}+2}{a_{n}+4}\right) \sum_{m \geqslant 2}\left|\alpha_{m}^{(1)}\right|<1 . \tag{1}
\end{equation*}
$$

Thus $\sum_{m \geqslant 2}\left|\beta_{m}^{(N)}\right|<1$ for any $N \geqslant N_{0}$.

On the other hand for any vector $\beta=e^{-i \theta}+\sum_{m \geqslant 2} \beta_{m} e^{-i m \theta}$ which is orthogonal some $\xi_{k}, k \geqslant 1$, then we have

$$
1=-\sum_{m \geqslant 2} \beta_{m} \frac{a_{k}+2}{a_{k}+2 m} \leqslant \sum_{m \geqslant 2}\left|\beta_{m}\right| .
$$

Thus by (1) and (2), we get a contradiction. Thus $\alpha^{(0)}=0$. \square

Corollary Let $S=\{n k: k \geqslant 0\} \cup\left\{a_{m}\right\}$ where $\left\{a_{m}\right\}$ is an increasing sequence of positive integers in $(n \mathbb{Z})^{c}$ and $\sum_{m} \frac{1}{a_{m}}=\infty$, then $P_{(n-1) / n} \vee Q_{S}=I$ and $P_{(n-1) / n} \wedge Q_{S}=0$.

Finding f from the restrictions to (X, S) is related to finding the inverse of certain Hankel operators. A special one is the following:

Let $H(s)(0<s<1)$ be the Hankel operator with the following matrix form

$$
\left(\begin{array}{cccc}
\frac{1}{1 \pm s} & \frac{1}{2 \pm s} & \frac{1}{3 \pm s} & \cdots \\
\frac{1}{2 \pm s} & \frac{1}{3 \pm s} & \frac{1}{4 \pm s} & \cdots \\
\frac{1}{3+s} & \frac{1}{4+s} & \frac{1}{5+s} & \cdots \\
\cdots & \cdots & \cdots & \ddots
\end{array}\right)
$$

Some References

[1] Man-Duen Choi, Tricks or Treats with the Hilbert Matrix, The Amer. Math. Monthly. Vol.90, No.5, 301-312, 1983.
[2] J. Dieudonné, Une propritété des racines de l'unité, Collection of articles dedicated to Alberto González Dominguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina Vol.25, 1-3, 1970/71.
[3] R.J. Evan and I.M. Stark, Generalized Vandermonde determinants and roots of unity of prime order, Proc. Amer. Math. Soc. Vol. 58,51-54, 1977.
[4] P. Frenkel, Simple proof of Chebotarev's theorem on roots of unity preprint, math. AC/0312398.
[5] D. Goldstein, R. Guralnick, and I. Issaacs, Inequalities for finite group per- mutation modules preprint, math. CO/0312407.
[6] M. Newman, On a theorem of Cebotarev Linear and Multilinear Algebra, Vol. 3 (no. 4), 259-262, 1975/76.
[7] Yu. G. Rešetnyak, New Proof of a theorem of N.G. Cebotarev, (Russian) Uspehi Mat. Nauk (N.S.), Vol.10, 155-157, 1955.
[8] P. Stevenhagen and H.W. Lenstra Jr., Chebotarëv and his density theorem, Math Intelligencer, Vol.18, 26-37, 1996. [9] Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett., Vol.12, 121-127, 2005.

Thanks

